

Maintaining and Restoring Aquatic Life Passage in an Urban System

October 5, 2023

Kristen O'Reilly 401/404 Permitting Supervisor Charlotte Storm Water Services

Presentation Objectives

Learn about 401/404 Permitting Learn about Charlotte's permitting program Learn about common issues and lessons learned

U.S. Army Corps of Engineers **Section 404** requires authorization from the Secretary of the Army, acting through the Corps of Engineers, for the discharge of dredged or fill material into all waters of the United States.

Section 401 requires a Water Quality Certification for any federally permitted or licensed activity that may result in a discharge to waters of the U.S.

Other federal regulations triggered if 404 permitting is required:

Endangered Species Act	Bald and Golden Eagle Protection Act
Migratory Bird Act	National Historic Preservation Act

Jurisdictional delineations

Jurisdictional delineations

Jurisdictional Determination - USACE

Identification and location of aquatic resources and determination of whether they are WOTUS.

Nationwide Permit (NWP) - USACE

Issued nationwide to streamline the authorization of activities that result in no more than minimal individual and cumulative adverse environmental effects.

- Many require notification to the district engineer before commencing activities.
- > NWP 3 and NWP 27 are most commonly used for stormwater utility and stream restoration projects.

Regional General Permit (RGP) - USACE

Developed regionally within each USACE district to address local issues. These differ across the state.

Water Quality General Certifications (WQGC) - NCDEQ

Issued statewide to maintain water quality standards. There is a WQGC that corresponds to each NWP or RGP.

Charlotte Storm Water Services

City of Charlotte

- largest municipality in North Carolina
- 15th largest city in the U.S.
- population of ~ 900,000 residents

Charlotte Storm Water Services

- 100,000+ existing storm drains
- 3,800+ miles of pipe
- 2,400 miles of open drainage and streams
 210 staff
- FY2024 capital budget is \$91M
- Surface Water Quality Team 23 staff including 4 permitting staff.

REPAIR PROJECTS PLANNED FOR COMPLETION BY FISCAL YEAR

Charlotte Storm Water Services

City of Charlotte

- largest municipality in North Carolina
- 15th largest city in the U.S.
- population of ~ 900,000 residents

Charlotte Storm Water S

- 100,000+ existing storm dra
- 3,800+ miles of pipe
- 2,400 miles of open drainage and streams
 210 staff
- FY2024 capital budget is \$91M
- Surface Water Quality Team 23 staff including 4 permitting staff.

In 2017... the USACE issued RGP 163 and NCDEQ issued WQGC 4508 to <u>CSWS</u>

REPAIR PROJECTS PLANNED FOR COMPLETION BY FISCAL YEAR

Examples of Activities Covered:

- Replacing and repairing culverts
- Rip rap and in-stream structures
- Stream channel relocations
- Streambank stabilization
- Pond maintenance

Example Thresholds for Notification:

<u>Streams</u>

Permanent Loss:	150LF
Permanent Impacts	500LF
Temporary	1,000LF

of Projects Permitted:

\triangleright	FY17 - FY23	191
\triangleright	FY23	41

A few RGP and GC Conditions:

- Aquatic Passage: Bury culverts. Maintain stream width
- **Rip Rap**: Minimize, sufficient size, keyed in, water must flow over
- Headcuts: Minimize destabilization
- **Riparian corridors:** Retain/reestablish tree and shrub cover.
- Soft bank stabilization and natural channel design: where practicable
- **Pump arounds.** Work in the dry.
- Erosion control. Compliance with NCG01. No plastic mesh.

Purpose and Need Avoid and Minimize Maintain or Restore Aquatic Passage

Aquatic Life Passage

- Bury culverts
 - \geq 48" culvert bury 1'
 - > < 48" culverts − bury 20%</p>
 - > Maintain stream width through the culvert
 - ➢ Slopes < 2.5%</p>

Culvert Study

- Bottomless are most successful. RCP are the least
- Multiple barrels are better than single barrels
- Slopes < ~1.4% are most successful

Aquatic Life Passage

- Bury culverts
 - \geq 48" culvert bury 1'
 - > < 48" culverts − bury 20%</p>
 - > Maintain stream width through the culvert
 - ➢ Slopes < 2.5%</p>

Culvert Study

- Bottomless are most successful. RCP are the least
- Multiple barrels are better than single barrels
- Slopes < ~1.4% are most successful

Culvert Burial

Culvert Burial

StormWater.CharMeck.org

Culvert Burial

Baffles and drops

Stilling Basin

October 2019

January 2021

Stilling Basin

October 2019

January 2021

Three-sided culverts

Three-sided culverts

Three-sided culverts

Redi Rock & 6" drops

Smooth transition in & out of culverts

StormWater.CharMeck.org

leck.org

25

Rock Sills

Rock Sills

Rock sills

- Do not work well on bends or spaced close together.
- Ideally, they need pools, riffles and runs between them to diffuse energy.
- Floodplain benches around rock sills also help diffuse energy.
- Live stakes on banks around sills helps prevent erosion around the structures

Rock sills

- Do not work well on bends or spaced close together.
- Ideally, they need pools, riffles and runs between them to diffuse energy.
- Floodplain benches around rock sills also help diffuse energy.
- Live stakes on banks around sills helps prevent erosion around the structures

Culvert slopes < 2.5%

Rip Rap

Rip Rap

- Size, specs and extent match the plans.
- Keyed into the banks.
- Sized not to move.
- Water flows <u>over</u> rip rap.

Rip Rap

Rip Rap

- Size, specs and extent match the plans.
- Keyed into the banks.
- Sized not to move.
- Water flows <u>over</u> rip rap.

Minimize removal of vegetation & reestablish native species

- The goal is to reestablish a healthy woody buffer.
- Invasives make it difficult.
- Ensure planting plans and nursery replacements are native to NC.
- Stick to the planting season.

Bank Stabilization

Hard bank Stabilization

Rock toe with a vegetated Geogrid

Bank Stabilization

Stabilization – no plastic netting

Proper installation of <u>natural</u> biodegradable matting is critical.

Stabilization – no plastic netting

Proper installation of <u>natural</u> biodegradable matting is critical.

Work in the Dry - Pump Around

Work in the Dry - Pump Around

Internal Guidance & Outreach

- 1. Sills—Rock and Log
- 2. Riffles—Constructed and Variable
- Vanes—Rock Cross Vane, Boulder J-Hook Vane, Double Drop Boulder Cross Vane, Log Cross Vane, and Angled Log Vane
- 4. Bank Stabilization—Boulder/Rock Toe, Toe Wood, Vegetated Soil Lift
- 5. Rock Drop Structure

Kristen O'Reilly Charlotte-Mecklenburg Storm Water Services (704) 517-0814 | <u>Kristen.Oreilly@charlottenc.gov</u>

